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Abstract 

Skyline query processing for location-based services, 
which considers both spatial and nonspatial attributes of 
the objects being queried, has recently received 
increasing attention. Existing solutions focus on solving 
point- or line-based skyline queries, in which the query 
location is an exact location point or a line segment. 
However, due to privacy concerns and limited precision 
of localization devices, the input of a user location is 
often a spatial range. This paper studies a new problem 
of how to process such range-based skyline queries. Two 
novel algorithms are proposed: one is index-based (I-
SKY) and the other is not based on any index (N-SKY). 
To handle frequent movements of the objects being 
queried, we also propose incremental versions of I-SKY 
and N-SKY, which avoid recomputing the query index 
and results from scratch. Additionally, we develop 
efficient solutions for probabilistic and continuous range-
based skyline queries. Experimental results show that our 
proposed algorithms well outperform the baseline 
algorithm that adopts the existing line-based skyline 
solution. Moreover, the incremental versions of I-SKY 
and N-SKY save substantial computation cost, especially 
when the objects move frequently. 
Key words: Location-based services, query processing, 

skyline queries, moving objects 

1. Introduction 

     The combination of personal locator 
technologies, global positioning systems, and 
wireless communication technologies has 
flourished location-based services (LBSs) in recent 
years. The main usage of LBSs is to provide 
mobile users with timely information at the right 
place for their decision making. Conventional 
LBSs focus on processing proximity-based queries, 
including the range query and nearest neighbor 
(NN) query. However, these queries are not 
sufficient for the applications that need to consider 
both spatial and nonspatial attributes of the objects 
being queried. A typical scenario is finding a 
nearby car park with cheap parking fee, in which 
distance is a spatial attribute and parking fee is a 
nonspatial attribute. Clearly, here a multicriterion  

 
query is more appealing than a conventional spatial 
query that considers the distance only. Among 
various multicriterion queries, the skyline query is 
considered as one of the most classical ones and 
receives the most attention in LBS research. 
However, the dynamic nature of the spatial  
attribute makes skyline queries in LBSs unique and 
challenging. Take the above park-finding scenario, 
for example. At different locations, the distances 
from the user to the car parks are not the same. As 
a consequence, the skyline query results differ for 
different locations. To efficiently compute location-
based skyline results, a number of algorithms have 
been proposed for one-shot queries,and continuous 
queries. Nevertheless, these previous studies have 
limitations as they simply assume that the query 
location is an exact location point or a line 
segment. In this paper, we relax this assumption 
and propose a more general skyline query—range-
based skyline query (RSQ), which takes a spatial 
range as the input of user location, as opposed to a 
point or a line in existing LBS skyline studies. 
Compared to existing skyline queries, the range-
based skyline query might be more practical for 
several reasons: 

• The location of the query issuer could be 
shaped as a spatial region (e.g., a region 
that covers a complex spatial object or a 
group of users). 

• Due to limited precision of localization 
devices, the query issuer does not have 
accurate knowledge about his/her exact 
location. 

• For privacy reasons, the query issuer may 
not want to expose his/her exact location 
to the service provider. And a widely used 
solution is to blur the location into a 
cloaking region so that the adversary has 
no clue about where the query issuer is 
exactly located. 

 To study the range-based skyline problem, Fig. 1a 
shows an example of the above park-finding 
scenario, where the hollow points represent the 
parks’ locations and the rectangle R represents the 
input range of the query. The nonspatial attributes 
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of the parks are shown in Fig. 1b, where low 
parking fee and high service quality are preferred. 
Given two parks p1 and p2 , if p1 is no worse than 
p2 in nonspatial attributes and p1 is closer to the 
query point than p2 ,1 we say p1 dominates p2 . A 
skyline query is to find all parks that are not 
dominated by any other park. The skyline results 
depend on the location of the query point. For 
example, if the query point is q1 , the skyline result 
set is {a; b} because c is dominated by b while d is 
dominated by both a and b; if the query point is q2 , 
the skyline result set is {b; c} because a and d are 
both dominated by c. Thus, given a range-based 
skyline query, the service provider should return a 
collective set of skyline results for every possible 
query point of the user in R. 
Unfortunately, this is not easy as the number of 
possible points in R is infinite. To address this 
issue, we propose a novel index-based algorithm, 
called I-SKY. The idea is to precompute the 
skyline scopes for all objects by their dominance 
relations. By indexing the skyline scopes, a range-
based skyline query can be efficiently processed 
through a root-to-leaf traversal of the index tree. 
   The range-based skyline problem becomes even 
more challenging for dynamic data sets where the 
objects being queried can move and update their 
spatial attributes frequently. Processing skyline 
queries over moving objects has numerous 
applications, such as object tracking and 
monitoring, location-aware computing, virtual 
environments, and computer games . For example, 
in a taxi dispatching application, the taxis notify 
their locations to the dispatcher from time to time 
(e.g., every 5 minutes). To dispatch taxis, the 
dispatcher considers the location identified and the 
last time the location wa reported, and selects the 
taxis that are near to the customers with low 
volatility (e.g., either locations are recently updated 
or taxis are located at highly predictable regions 
with no traffic). As another example, in battlefields, 
to send critical supplies such as ammunitions and 
medical kits, the best locations can be dynamically 
determined by the positions of ground troops that 
are on the move and other nonspatial factors such 
as the current equipments and the number of 
wounded persons.2 In these highly dynamic 
scenarios, the index-based I-SKY algorithm may 
not be efficient, as the index maintenance cost is 
expensive. To overcome this drawback, we further 
propose a nonindex algorithm, called N-SKY. It 
reduces a range-based skyline query into several 
segment-based skyline queries (SSQ), for which we 
develop efficient query processing techniques. 
   Our contributions made in this paper are as 
follows: 

 
• We identify a new problem of range-based 

skyline queries arising in LBS applications. To 
the best of our knowledge, this is the first work 
that studies this problem.  

• To process range-based skyline queries, we 
propose an index-based algorithm called I-
SKY for static data sets and a nonindex 
algorithm called N-SKY for highly dynamic 
data sets. 

• We further extend the problem to probabilistic 
and continuous range-based skyline queries. 
To process probabilistic top-k queries, we 
propose pruning techniques to improve 
computational efficiency. To process 
continuous queries, we propose efficient 
methods to compute the valid scope of each 
skyline object. 

• We conduct extensive experiments to evaluate 
the performance of the proposed algorithms. 
The result show that our algorithms perform 
well under various system settings. In 
particular, the incremental algorithms save 
substantial computation cost for highly 
dynamic data sets. 

 
   The rest of this paper is organized as follows: 
Section 2 reviews related work on skyline queries 
and range-based queries. Section 3 gives some 
preliminaries of the problem. We present the index-
based algorithm I-SKY and the nonindex algorithm 
N-SKY in Sections 4 and 5, respectively. In 
Section 6, we extend the algorithms to probabilistic 
top-k and continuous range-based skyline queries. 
The proposed algorithms are experimentally 
evaluated in Section 7.Finally, this paper is 
concluded in Section 8. 
 
 

2 Related Work 

In essence, a range-based skyline query inherits the 
characteristics of a skyline query and a range-based 
query. As such, we review the existing work on 
these two queries. 
    Skyline query processing. Skyline query 
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processing was first introduced into the database 
community by Borzonyi et al. A number of 
algorithms have been proposed from then on. These 
algorithms can be divided into two categories. The 
first category is nonindex algorithms and the 
representatives are Black Nested Loop(BNL) and 
Divide-and-Conquer (D&C) [3]. BNL scans the 
data set sequentially and compares each new object 
to all skyline candidates kept in the memory. D&C 
partitions the data set into several parts, processes 
each part in the memory, and, finally, merges all 
partial skylines together. SFS [5] improved BNL by 
presorting the data sets. In the Bitmap approach 
[23], each data point is encoded in a bit string and 
the skyline is computed by some efficient 
operations on the bit matrix of all data points. The 
other category of skyline algorithms is index-based. 
In a high-dimensional data set is converted into a 
1D data set and a B+-tree is built to accelerate 
query processing. In an algorithm called NN was 
proposed based on the depth first nearest neighbor 
search via RÃ -tree. Papadias et al. proposed an 
improved algorithm, called Branch-and-Bound 
Skyline (BBS), which was based on the best-first 
nearest neighbor search. By accessing only the 
nodes that contain skyline points and employing 
effective pruning techniques, BBS achieves the 
optimal I/O access. More recently, in [25], a subset 
of skyline points are collected to approximately 
represent the distribution of an entire set of skyline 
points. Lee et al  proposed a new index structure 
called ZBtree to index and store data points based 
on Z-order curve, and developed a novel algorithm 
ZSearch to process skyline queries. 
    Huang et al. [12] introduced the skyline query 
problem in the context of LBSs and proposed a 
continuous skyline query processing algorithm 
called CSQ for moving clients. Assuming a linear 
movement model, CSQ processes the skyline query 
at the starting point of the query segment and tries 
to predict the possible changes to the answer set 
when the client moves. This avoids continuously 
computing the skyline results from scratch. Zheng 
et al. [28] introduced a notion of valid scope for 
LBS skyline queries, which saves the 
recomputation if the next query point is still inside 
the valid scope. Sharifzadeh and Shahabi [22] 
defined a variant of skyline query in LBSs by 
considering the distance between an object and a 
set of query points. Our work is inspired by these 
prior point-based or line-based skyline algorithms, 
but focus on range-based skyline queries. 
Obviously, range-based skyline queries cannot be 
processed by simply applying the existing 
algorithms because the number of query points/line 
segments in a range is infinite. 
    Range-based query processing. Range-based 

query processing has recently received notable 
attention as the location privacy issue is becoming 
increasingly important. For privacy reasons, mobile 
clients tend to blur their exact locations into an 
uncertain range so that the service provider cannot 
find where they are exactly located. The service 
provider then returns a superset of candidate results 
for every possible query point in the range. Finally, 
the clients filter these results and obtain the true 
result by their exact locations. Existing range-based 
query algorithms studied only range-based kNN 
(RkNN) query. Hu and Lee proposed the first 
RkNN solution for rectangular ranges [10]. Ku et 
al. studied the same problem in spatial networks 
[17]. Complementally, Xu et al. developed an 
RkNN algorithm for circular ranges [26]. To the 
best of our knowledge, there is no work that has 
studied range-based skyline queries. 
 

3 Preliminaries 

3.1 Problem Definition 

Before we present the detailed algorithms for 
processing range-based skyline queries, in this 
section we give some preliminaries of the problem. 
We consider a data set of objects O. Each object o 
2 O is associated with one spatial (i.e., location) 
attribute and several other nonspatial attributes 
(e.g., parking fee and service quality). 

Definition 1 (Nonspatial Dominance). Given two 
objects o and o0 , if o0 is no worse than o in all 
nonspatial attributes, then we say o0 nonspatially 
dominates o. And o0 is a nonspatial dominator 
object o f o, a n d o i s a nonspatial dominance 
object of o0 . Formally, it is denoted as o0 / o. The 
set of o’s nonspatial dominator objects is denoted 
as Dom(o), i.e., o is dominated by any object in 
Dom(o) on nonspatial attributes. 

Definition 2 (Dominance).  

Given a query point q and two objects o and o0 , if 
1) o0 nonspatially dominates o, and 2) o0 is closer 
to q than o (i.e., o0 also spatially dominates o), then 
we say o0 dominates o w.r.t. the query point q. 
Formally, it is denoted as o0 /q o. 
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TABLE 1 
Geometrical Notations 

 
Definition 3 (Point-Based Skyline Query (PSQ)). 
Given a data set O, the point À based skyline of a 
query point q returns a subset of O in which each 
object is not dominated by any other object in O 
w.r.t. q. Based on the above definitions, we 
formally define the range-based skyline query as 
follows: 
Definition 4 (Range-Based Skyline query) Given 
a data set O and a query range R, the range-based 
skyline query returns a superset of objects that 
appear in the skyline set of some point in R.  
      

3.2 Assumptions and Notations 
In this paper, we are interested in how to efficiently 
compute RSQ(R; O) given the query range R and 
the data 
set O. To facilitate query processing, we make the 
following 
assumptions: 

• Both the mobile user and the objects are 
located in a 2D plane and the distance metric is 
euclidean distance. 

• In a dynamic environment, both the mobile 
user and the objects may move and update 
their spatial locations. 

• The values of nonspatial attributes remain 
constant throughout the query period. 

• The query range R is rectangular. 

• Each object has a different location. And the 
distances from the mobile user to any two 
objects are always not equal to each other. 
The geometrical notations that will be used in     
this paper are listed in Table 1. 

 

4  INDEX-BASED RSQ ALGORITHM: I-

SKY 

We now present the algorithms for processing the 
range-based skyline query. We first consider the 
basic one-shot RSQ in this and next section. We 

will extend it to the probabilistic RSQ and 
continuous RSQ (C-RSQ) in Section 6. 
   This section introduces an index-based RSQ 
algorithm, called I-SKY. In Section 4.1, we first 
propose a notion of skyline scope for each object. 
By precomputing and indexing such skyline 
scopes, the RSQ query can be easily processed. 
To minimize the cost in computing the skyline 
scopes, we also propose an incremental version of 
the skyline scope construction algorithm in Section 
4.2. 

 
4.1 Index Construction and Query Processing 
 
First, we introduce a notion of skyline scope for 
each object o. If Dom(o) is empty, i.e., o has no 
nonspatial dominator object, then o must be a 
skyline member of any query point q. 
 

 
Fig. 2. Processing RSQ by skyline scopes 

 
Otherwise, o will not be a skyline member of a 
query point q if it is farther away from q than any 
of its nonspatial dominator objects in Dom(o); in 
other words, o will be a skyline member of q if it is 
closer to q than all its dominators in Dom(o). 
Therefore, we define the skyline scope of each 
object o as a region in which for any point q, o is 
closer to q than any object in Dom(o). 
Definition 5 (Skyline Scope). For an object o €O, 
its skyline scope in a 2D plane P  
   To compute the skyline scope of each object o, 
we borrow the concept of Voronoi cell [2]. 
Definition 6 (Voronoi Cell). Given a data set O, 
the Voronoi cell of an object o 2 O, denoted as V 
convex hull in which for any point q, o is the 
nearest object in O. 
     Obviously, the skyline scope of an object o can 
be obtained by computing the Voronoi cell of o 
with the object subset containing o and its 
nonspatial dominator objects, i.e., fog [ DomðoÞ. 
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Then, a range-based skyline RSQ(R; O) can be 
computed by finding the objects whose skyline 
scopes intersect with R. We remark that as each 
object decides its own skyline scope with a 
different object subset, the skyline scopes of 
different objects may overlap. One should not take 
the union of all objects’ skyline scopes as a 
Voronoi diagram [2]. Fig. 2 shows an example. 
Suppose a, d, and e have no nonspatial dominator 
object and we have the nonspatial dominance 
relations as a / b / c, d / b / c, and e / b / c.  
Thus, the sky-line scopes of a, d, and e cover the 
whole space. On the other hand, the skyline scopes 
of b and c are obtained by their Voronoi cells with 
object subsets. Given an RSQ query with R as the 
input of the query range (see Fig. 2), since R 
intersects with the skyline scopes of a, b, d, and e, 
the skyline result set is fa; b; d   As the skyline 
scopes do not depend on the query, they can be 
precomputed and indexed in advance for fast  
retrieval. In this paper, we use the MX-CIF 
quadtree [21] for indexing since it is considered 
more efficient to index overlapping spatial objects 
than an R-tree. Specifically, the 
MX-CIF quadtree recursively decomposes the 
underlying space into four equal-sized subspaces 
such that the skyline scope of each object is fully 
enclosed by a minimal subspace. Each subspace 
corresponds to an index node in the MX-CIF 
quadtree. Each object is associated with the index 
node of the minimal subspace. For example, in Fig. 
3a, since the skyline scopes of a and b cannot be 
enclosed by any single quadrant of the whole 
space, they are associated with the root in Fig. 3b; 
for the skyline scopes of c and d, their minimal 
enclosing nodes are N4 and N21 , respectively.  
   The search over the index is straightforward. 
Given a query range R, we want to find out the 
skyline scopes that have intersection with R. Thus, 
we recursively traverse the MX-CIF quadtree from 
the root all the way down to the leaf nodes. For any 
index node whose corresponding subspace 
intersects with R, the skyline scope of every 
associated object is retrieved and checked. If it has 
intersection with R, the corresponding object is 
added to the skyline result set. 
 

 
 

4.2 Incremental Skyline Scope Computation 
 
The skyline scopes may change drastically as the 
objects move. To avoid recomputing all skyline 
scopes from scratch, in this section we introduce an 
incremental algorithm that efficiently updates 
skyline scopes when the objects move.3 As we will 
explain soon, the incremental algorithm can also be 
used to compute the initial skyline scopes (i.e., 
Line 6 of Algorithm 1 can be modified to 
incrementally compute the skyline scopes). 
 

 
.. Fig. 3. MX-CIF quadtree index. 
    Any movement of an object can be decomposed 
into two operations: leaving the data set first and 
joining again. 
 

 
Fig. 4. Recomputation of skyline scope. 

The solution to the object’s joining is 
straightforward. Suppose that an object o joins the 
data set. Its skyline scope with the current data set 
can be computed and inserted into the index tree. 
Additionally, for each o’s nonspatial dominance 
object m, we should check whether PerBis(mo) 
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intersects with the original skyline scope of m. If it 
does, the new skyline scope of m should be updated 
to the intersection area and the original skyline 
scope of m. can be also incrementally computed as 
if they join the data set one by one. 
    The solution to the object o’s leaving is more 
complex. The first step is deleting the skyline scope 
of o from the index tree. Then, for each o’s 
nonspatial dominance object m, we should check 
whether o has contributed to the boundary of m’s 
skyline scope: if it has not, the skyline scope of m 
does not change. Otherwise, it should be 
recomputed. 
    Fig. 4 illustrates such a recomputation process. 
We assume that the original skyline scope of m is 
shown as the triangle  in Fig. 4a and then the object 
o leaves. It is an intermediate skyline scope. The 
essence of skyline scope recomputation is finding 
the objects in Dom(m) whose perpendicular 
bisectors with m “cut” the intermediate skyline 
scope and form the final new skyline scope. 
However, not every object in Dom(m) has the 
chance of cutting and some can be pruned to reduce 
the computation cost. To facilitate the pruning, we 
introduce a notion of search area in the 
recomputation, which is defined as an area that any 
object located outside has no chance to contribute 
to the new skyline scope and can be pruned from 
further consideration. For example, the search area 
is marked by dashed lines in Figs. 4b, 4c, and 4d. 
And then we repeatedly choose the objects in the 
search area (e.g., object e in Fig. 4c and object f in 
Fig. 4d) from near to far to perform such cutting. 
After each step of cutting, the intermediate skyline 
scope may shrink. In Fig. 4c, it becomes polygon < 
c2 ; c0 ; c4 ; c3 ; c1> and in Fig. 4d it further 
becomes polygon < c2 ; c0 ; c5 ; c6 ; c3 ; c1>. The 
search area will also shrink accordingly. When no 
more object is found in the search area, the final 
skyline scope is obtained. 
   In the following, we explain in detail how to 
update the search area from an intermediate skyline 
scope. An intermediate skyline scope may be a 
close or an open area, as shown in Figs. 5a and 5b, 
respectively. In both cases, it can be divided into 
two parts: the original skyline scope of m and the 
other area that shares its border PerBis(mo) 
(marked by dotted lines in Figs. 5a and 5b). We call 
the second part an incremental area. With this 

notion, if an object has a chance to contribute to the 
final new skyline scope of m, its perpendicular 
bisector with m should only intersect with the 
incremental area, and not with the original skyline 
scope of m. This principle lays the foundation for 
object pruning. If an object does contribute to the 
new skyline scope, the shape of new search area 
can be obtained by 1. 
Definition 7. Given a point o and a half-line r 
starting from point a, let o0 denote the symmetrical 
point of o with respect to r, and Hoo0 ðrÞ denote 
the half plane on r’s infinite-direction side of 
Line(oo0 ) (i.e., the right side of Line(oo0 ) in Fig. 
7),no matter whether Line(oo0 ) intersects with r, 
as shown in Fig. 7. Note that for any point p in 
PerBis(po) will intersect with r. 
  The proof of this theorem is given in Appendix B, 
available in the online supplemental material. 
  With the notion of search area, we present the 
index update algorithm in Algorithm  . In the object 
leaving scenario, we check the nonspatial 
dominator objects from near to far (Lines 11 and 
13), because the nearer dominator 
objects are more likely to contribute to the 
boundary of the final skyline scope. Note that the 
search area is the union of some circular areas (see 
Fig. 6). We also set a stop condition—the search 
bound maxDist—for the cutting. 
This bound is set to two times of the distance 
between m and the farthest vertex of the 
incremental area (Lines 15-19). 
Algorithm 2. Update of skyline scope index for I-
SKY 
 1: if object o joins then 
 2:compute SS(o) and insert it into the index tree; 
 3:for each o’s non-spatial dominance object m do 
 4:if PerBis(mo) intersects with SS(m) then 
 5:SS(mÞ ¼ SS(m) \Hðm; oÞ; 
 6:replace SS(m) in the index tree; 
 7: if object o leaves then 
 8:remove SS(o) from the index tree; 
 9:for each o’s non-spatial dominance object m do 
10:if o has contributed to m’s skyline scope then 
11:sort m’s non-spatial dominator objects into 
             DomQueue ordered by their distances to m; 
12:initialize the search area and incremental area 
             by Theorem 1; 
13:while DomQueue is not empty do 
14:xDomQueue:popðÞ; 
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15:if the incremental area is open then 
16:maxDist1; 
17:else maxDistthe distance from the 
                 farthest vertex of the incremental area to 
m; 
18:if distðx; mÞ > 2 Â maxDist then 
19:break; 
20:if x is in the search area then 
21:cut the intermediate skyline scope by 
                     PerBis(xm); 
22:update the incremental area and search area 
23:replace SS(m) in the index tree; 
 
                  

 
Fig. 5. Intermediate skyline scopes. 

 
 
 
 

5 NONINDEX RSQ ALGORITHM: N-

SKY 

I-SKY indexes the skyline scopes, which 
accelerates the processing of range-based skyline 
queries. However, the maintenance cost of the 
skyline scope index would be high if the objects 
update their locations frequently. Although we 
have developed an incremental index update 
algorithm, frequent object location updates may 
still cause many unnecessary index updating 
operations on the skyline scopes that are not being 
queried. 
    To avoid the high update cost of I-SKY for the 
scenarios where the objects move frequently and 
fast, in this section we propose a nonindex 

algorithm N-SKY. First, we prove that a range-
based skyline query can be reduced to several 
segment-based skyline queries. Then, we present an 
efficient algorithm for processing segment-based 
skyline queries. 
 

5.1 Reducing RSQ to SSQs 
 
According to the definition of RSQ (Definition 4 in 
Section 3.1), any object o 2 O located inside the 
query range R must be a result object of the query, 
i.e., a member of PSQ(o; O), since o is not spatially 
dominated by any other object with respect to the 
query point occupied by o. Such objects can be 
obtained by a range query of R. In the following, 
we focus on finding the set of result objects located 
outside R. 
   We start by defining the segment-based skyline 
query. 
 

 
Fig. 5. Intermediate skyline scopes. 
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Fig. 6. Illustration of search area for the two cases. 

 
 

 
Fig 7.Shaded area 

Definition 8 (Segment-based Skyline Query). 
Given a data set O and a line segment l, the 
segment-based skyline returns a superset of objects 
that appear in the skyline set of any point on 
   An important observation is that, any result 
object  must be a member of the skyline set of 
some point on the boundary of R. Theorem 2 
proves the correctness of this observation, which 
can then be used to reduce the RSQ problem to 
SSQ problem. 
Theorem 2. If an object o is a result of RSQ(R; O) 
and o is outside R, o must be a member of the 
skyline set w.r.t. some query point on the boundary 
of R.The proof of this theorem is given in 
Appendix C,available in the online supplemental 
material. 
   By Theorem 2, the RSQ problem can be reduced 
to arange query plus several SSQs based on the 

boundary of the query range. As the query range is 
rectangular, its boundary consists of four line 
segments. This reduction effectively decreases the 
dimensionality of the problem from 2D to 1D, as 
stated in Theorem 3. 
Theorem 3.  
Given a data set O and a rectangular range R whose 
 boundary consists of four line segments l1 through    
14 , the RSQ problem can be reduced to a range 
query of R and four SSQs of  SSQ(l1 ; O), SSQ(l2 ; 
O), SSQ(l3 ; O), and SSQ(l4 ; O). 
   The range query of R can be easily evaluated 
using a traditional method. In the following, we 
discuss how to efficiently compute SSQ(l; O) given 
a line segment l and a data set O. the candidate 
enter-in points and leave-out points for each 
nonskyline object and skyline object, respectively, 
based on the current skyline set. As the skyline set 
changes, we update the enter-in and leave-out 
points that are affected, and then choose the next 
nearest point for updating the skyline set. In the 
following, we give the details of this SSQ 
algorithm. 
 

5.2 SSQ Algorithm 
 
5.2.1 Overview 
 

SSQ(l; O) consists of the skyline of each point q on 
the line segment l. The basic idea of evaluating an 
SSQ is to move q from l’s left end to its right end, 
and look for positions where the skyline set 
changes. The changes can be divided into two 
cases: an object enters the skyline set and an object 
leaves the skyline set. Intuitively, the former case 
means no any other object dominates the entering 
object any longer, and the latter case means another 
object is about to dominate the leaving object. The 
corresponding points on the line segment are called 
enter-in and leave-out points, respectively. To effi- 
ciently compute the enter-in point and leave-out 
point of each object o, we observe a prerequisite as 
stated in Lemma 1. 
Lemma 1. Regarding q as the query point, if there 
is no current skyline object o0 2 PSQðq; OÞ 
dominating object o (both nonspatially and 
spatially), o will not be dominated by any other 
object in O, and hence should enter the skyline set; 
on the other hand, if there is some skyline object o0  
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dominating object o, o is no longer a skyline 
member of q. 
   However, the challenge is that the skyline set will 
change as the query point moves. As a result, it is 
not easy to precompute the enter-in points and 
leave-out points of all objects in advance. To 
resolve this issue, we maintain 
 

5.2.2 Data Structures of the SSQ Algorithm 
 

To facilitate our discussion, we introduce a 
coordinate system along the line segment. We use 
the name of a pointand its coordinate 
interchangeably, i.e., a means both the point a and 
its coordinate. Hence, a < b (resp. a > b) means 
a lies to the left (resp. right) of b. 
    For each object o 2 O and a point p on the line 
segment, if no object in the skyline set PSQ(p; O) 
dominates o w.r.t. p, p is called a free point of o. 
For each nonskyline object o, the left-most free 
point of o is called o’s enter-in point (denoted as 
In[o]). For each skyline object o, the right-most 
free point of o is called o’s leave-out point (denoted 
as Out[o]). 
Meanwhile, we say o is the corresponding object of 
its enter- in point or leave-out point. Obviously, as 
the skyline set changes, the enter-in and leave-out 
points of some objects will change as well. 
    Fig. 8 illustrates a method to compute the enter-
in and leave-out points, where l is a boundary line 
of the query region. We first find out all nonspatial 
dominator objects of o in the skyline set, e.g., a; b, 
and c as shown in Fig. 8a. 
According to the relationship between their 
projections on the line segment l and o’s projection, 
these objects can be divided into two subsets. If the 
projection of an object lies to the left of o’s 
projection, it is called o’s left nonspatial dominator, 
e.g., a and b. Meanwhile, we say a and b left 
dominate o. For any object o and its nonspatial 
dominator object a, the intersection point of 
PerBis(ao) and Line(l) is called CSP ha; o; li. The 
CSP of o’s left nonspatial dominator and o is called 
o’s left non-spatial dominate point (LDP), e.g., 
points p1 and p2 . On the other hand, if the 
projection of an object lies to the right of o’s 
projection, it is called o’s right nonspatial 
dominator, e.g., c. Meanwhile, we say c right 
dominates o. The CSP of o’s right dominator and o 

is called o’s right nonspatial dominate point (RDP), 
e.g., point p3 . To get the enter-in point In[o], we 
find out the rightmost LDP (RM-LDP) and the 
leftmost RDP (LM-RDP). If the RM- LDP lies on 
the left side of the LM-RDP (e.g., point p1 versus 
p3 in Fig. 8a), the RM-LDP is obviously the point 
of In[o], as starting from this point to the LM-RDP, 
o is not spatially dominated by any of its other 
nonspatial dom- inator object. Otherwise, if the 
RM-LDP lies on the right side of the LM-RDP 
(e.g., point p1 versus p3 in Fig. 8b), it means that o 
will always be spatially dominated by some of 

 
Fig. 8. Illustration of enter-in point. 

 
its nonspatial dominator objects. Hence, o would 
never enter the skyline set and thus In[o] is left as 
empty. 
Similarly, Out[o] for a skyline member o can be 
obtained from the LM-RDP. 
   We introduce a priority list UpdateQueue to store 
the enter-in and leave-out points from left to right. 
As the query point moves, we repeatedly pop up 
the first element of UpdateQueue and execute the 
corresponding enter-in or leave-out operation. As 
the skyline set changes, the enter-in and leave-out 
points of some object(s) will change as well and the 
corresponding elements in UpdateQueue should be 
adjusted. As will be proved in Theorem 4, the 
leave-out operation will not affect the enter-in or 
leave-out point of any other object. The enter-in 
operation of an object o will affect the enter-in and 
leave-out points of o’s nonspatial dominance 
objects only. Specifically, the enter-in point(s) of 
some object(s) may move rightwards and the leave-
out point(s) of some object(s) may move leftwards. 
Thus, the corresponding elements in UpdateQueue 
must change accordingly. In particular, the new 
enter-in point of some object may lie to the right of 
its the leftmost RDP. Since in this case it has no 
chance for the object to enter the skyline set any 
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longer, such an enter-in point should be removed 
from UpdateQueue. 
Algorithm 3 gives a formal description for the 
dynamic update of UpdateQueue when a new 
object o enters the skyline set. The following 
theorem justifies the leave-out operation and thus 
the correctness of this algorithm. 

Algorithm 3. Dynamic update of UpdateQueue 
(when objecto enters the skyline set) 
 1: NON_SKYfmjo / m ^ m 62 PSQðIn½oŠ; OÞg; 
 2: for each object m in NON_SKY do 
 3:if o left dominates m at p and p lies on the right 
side 
5:update In[m] in UpdateQueue; 
 6:if o right dominates m at p and p lies on the left 
side then 
 7:remove In[m] from UpdateQueue; 
 8: SKY 
 9: for each object m in SKY do 
10:if o right dominates m at p and p lies on the left 
side of Out[m] then 
11:Out[m]p; 
12:update Out[m] in UpdateQueue; 
13: compute Out[o] based on the skyline set; 
14: insert Out[o] into UpdateQueue; 
Theorem 4. In the SSQ(l; O) problem, if an object 
m 2 O leaves the skyline set at point q on the line 
segment l, the enter-in or leave-out point of other 
objects in O will not be affected. 
  The proof of this theorem is given in Appendix D, 
available in the online supplemental material. 
 

5.2.3 SSQ Algorithm 
 
With the data structures of enter-in points, leave-
out points, and UpdateQueue, Algorithm 4 gives 
the pseudocode of the complete SSQ algorithm. We 
illustrate the algorithm using an example shown in 
Fig. 9. Fig. 9a shows the positions of five objects a-
e and the line segment l, and Fig. 9b shows the two 
nonspatial attributes of each object. Assuming that 
lower attribute values are preferred, we can get 
sevennonspatial dominance pairs 

Algorithm 4. Algorithm for SSQ(l; O) 
 1: initialize P SQPSQ(s; O), where s is the starting 
    point of l; 
 2: while UpdateQueue is not empty do 
 3:next qleftmost point of UpdateQueue; 
 4:if next q is not within l then 

 5:break; 
 6:ocorresponding object of next q; 
 7:remove next q from UpdateQueue; 
 8:if next q is a leave-out point then 
 9:P SQP SQ À fog; 
10:if next q is an enter-in point then 
11:P SQP SQ [ fog; 
12:invoke Algorithm 3 to update UpdateQueue; 
    Initially, the skyline set at the starting point s is 
computed by a point-based skyline algorithm (e.g., 
BBS [19]) or reused from the results of an adjacent 
line segment if available. The result set for this 
example is fa; bg (see Fig. 9c). Then, the enter-in 
point and leave-out point of each object is 
computed by the method presented in the last 
section. As no object dominates a, a will never 
leave the skyline set, and hence there is no Out½aŠ. 
After sorting these enter-in and leave-out points 
from left to right, UpdateQueue is initialized. Next, 
we pop up the first element from UpdateQueue and 
perform the corresponding update of the skyline 
set, that is, object c enters the skyline set when the 
query point q passes p1 . Because objects b, d, and 
e are c’s nonspatial dominance objects, we should 
check whether their enter-in and leave-out points 
will be affected. Since c right dominates e w.r.t. 
point p6 and p6 lies to the left of e’s enter-in point 
p5 , e has no chance to enter the skyline set. Its 
enter-in point should be removed from 
UpdateQueue. Since c left dominates d w.r.t. point 
p4 , which lies to the right of d’s original enter-in 
point p3 , In½dŠ should be updated as p4 . Since 
c right dominates b w.r.t. p7 , which lies to the left 
of b’s original leave-out point p2 , Out[b] should be 
updated as p7 . After updating the enter-in and 
leave-out points, two elements remain in 
UpdateQueue. After that, they are popped up and 
the corresponding updates are performed, that is, b 
leaves the skyline set and d enters the skyline set. 
Finally, UpdateQueue becomes empty and the 
algorithm is terminated. 
    The union of the skyline sets generated during 
query processing forms the final results of SSQ(l; 
O). In the above example, SSQ(l; O) can be 
obtained as {a; b; c; d}. By the SSQ algorithm, we 
can also record the sky_interval of each SSQ result 
object, i.e., the part of the line segment in which the 
object is in the skyline set. 



IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014 

ISSN: 2320 – 8791 (Impact Factor: 1.479)  

www.ijreat.org 

 

www.ijreat.org 
                                     Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)                            11 

    The time complexity of the SSQ algorithm 
(Algorithm 4) is analyzed as follows: For each 
result object of SSQ(l; O), Algorithm 3 is invoked 
once. The size of the SSQ result set can be 
estimated as Oððln jOjÞd Þ, where d is the number 
of nonspatial attributes [1]. Algorithm 3 needs to 
handle each nonspatial dominance object of the 
new skyline member. The average number of such 
dominance objects is calculated. For each 
nonspatial dominance object, the possible 
operations are modifying their enter-in and leave-
out points and updating their positions in Update- 
Queue. The complexity of the former is linear .  

 
Fig. 9. Illustration of SSQ algorithm. 

 

6 EXTENSIONS 

 
In this section, we extend the RSQ problem to the 
probabilistic RSQ query in Section 6.1 and the 
continuous RSQ query in Section 6.2. 
 

 

6.1 Probabilistic RSQ Problem 
 

As the RSQ query considers a spatial range as the 
query input, instead of a location point, the result 
set size might be too large for the user in some 
applications. To address this problem, we propose a 
concept of skyline probability to rank the skyline 
results of the RSQ query. 
Definition 9 (Skyline Probability). For a range-
based skyline query RSQ(R; O) and a result object 
o 2 O, the skyline probability of o is defined as the 
portion (in percentage) of the query range R in 
which any point q satisfies that o is a skyline result 
of PSQ(q; O). 
   Thus, we can reduce the result set by returning 
only the op-k results with the highest skyline 
probabilities, which is termed as probabilistic top-k 
RSQ. To answer such queries, we first consider 
how to extend the I-SKY algorithm. 
According to Definitions 5 and 9, the skyline 
probability of an object o can be obtained by the 
intersection area of the query range R and o’s 
skyline scope.Recall that in the index tree of 
skyline scopes (Section 4.1), the subspace of each 
index node serves as a minimal bound of the 
associated skyline scopes. In other words, if o’s 
skyline scope is associated with an index node n, 
we must have inter areaðR; oÞ  inter areaðR; nÞ. 
Based on this observation, we develop Algorithm 5 
to prune the search space for top-k query 
processing. We dynamically maintain a priority 
queue H for index nodes and data objects, ordered 
by their inter area values, while traversing the 
index tree (Lines 3-4 and 7-8). An object enqueued 
from H may become a top-k result (Lines 9-13). 
The top-k query processing proceeds until we 
encounter an index node or an object whose 
intersection area is no larger than the kth result 
obtained so far (Line 6). This is because all the 
remaining objects could not have an intersection 
area (skyline probability) larger than the current kth 
result. Thus, they can be pruned from consideration 
as top-k results. 

Algorithm 5. Probabilistic top-k RSQ processing 
(I-SKY) 
 1: initialize the top-k result set S; 
 2: denote the query range as R, the k-th result in S    
as sk 
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 3: insert the root of skyline-scope index iRoot into 
a priority queue H, sorted in descending order of 
    inter_area 
 4: while H is not empty do 
 5: pop up the top element e from H 
 6: if |s|= k and inter area(R; e)< inter area(R; sk ) 
      then break; 
 7: if e is an index node then 
 8:insert e’s children and associated objects into H 
 9: if e is a data object then 
10:if |S| < k then 
11:insert e into S and compute sk if available 
12:else if inter area(R; e) > inter area(R; sk ) then 
13:replace sk with e in S and recompute sk 
    Next, we discuss how to extend the N-SKY 
algorithm for processing the probabilistic top-k 
RSQ query. In Theorem 3, we have showed that the 
RSQ problem can be reduced to a range query of R 
and four SSQs of the range boundary. Recall in the 
proposed SSQ algorithm (Section 5.2), the skyline 
results of a line segment l are obtained by first 
computing the skyline set PSQ(s; O) of l’s starting 
point s and then dynamically updating it by moving 
the query point along l to its ending point. A 
significant amount of computation lies in updating 
the skyline set based on the enter-in/leave-out 
points of the objects when the query point moves. 
To prune the computation for probabilistic top-k 
processing, we prove in Theorem 5 that if an object 
is a final SSQ result, it must be a skyline object in 
PSQ(s; O) or its initial enter-in point must lie on l. 
Thus, we can quickly obtain a candidate set of 
skyline results through the initial processing. 

Theorem 5. For SSQ(l; O), if an object is a final 
SSQ result, it  must be in PSQ(s; O) or its initial 
enter-in point must lie on l, where s is the starting 
point of l. 
     The proof of this theorem is given in Appendix 
E, available in the online supplemental material. 
     Then, we develop an upper bound of skyline 
probability for each object in the candidate set in 
order to prioritize further processing. For a skyline 
object o in PSQ(s; O), its leave-out point Out[o] 
can be computed as discussed in Section 5.2.2. 
Denote o’s right nonspatial dominator object 
corresponding to Out[o] as o0 . The perpendicular 
bisector PerBis(oo0 ) divides the whole space into 
two open-half planes. Clearly, o will not be a 
skyline object for any query point q located in the 

open-half plane containing o0 , since o will be (at 
least) dominated by o0 w.r.t. such q. Thus, we can 
derive the upper bound of o’s skyline probability. 
consider the segment sv in Fig. 10, where b is an 
initial skyline object and Out½bŠ ¼ p2 ; hence, 
max_prob(b) is the portion of the area enclosed by 
the polygon hs; p2 ; i2 ; w; ui. 
     Similarly, for a nonskyline object o, we can 
compute itsenter-in point In|Š. Denote its left 
nonspatial dominator object (an initial skyline 
result)  It is possible for this object o to become a 
skyline result only if the query point q is located in 
the open-half plane containing o cut by 
PerBis(oo00 ), since otherwise o will be dominated 
by o00 . In the example of Fig. 10, for the 
nonskyline object d, max_prob(d) is the portion of 
the area enclosed by the polygon hp3 ; v; w; i3 i, . 
     The max-prob bound can be further tightened 
when weconsider more subsequent line segments. 
In Fig. 10,suppose d is an initial skyline result for 
the segment vw and Out½dŠ ¼ p8 . Thus, 
max_prob(d) can be further reduced to the portion 
of the polygon hp3 ; v; p8 ; i8 ; i3 i when vw is 
considered. 
     Based on the notion of max-prob, we develop 
the probabilistic top-k RSQ algorithm for N-SKY 
in Algorithm 6. In the first stage, we compute the 
skyline results of range query R 
(Line 3). After getting their skyline probabilities, 
the top-k result set S is initialized (Line 4). Next, 
we consider the four SSQ queries and compute a 
candidate result set SKY_CAND (Lines 5-10). For 
each object in SKY_CAND, we compute its  max-
prob bound and insert it into a priority queue H in 
the descending order of max-prob (Lines 11-12). 
Finally, we iteratively compute the skyline 
probability for each object in H and dynamically 
update S, until the kth object obtained so far has a 
skyline probability higher than the max-prob bound 
of the next object (Lines 13-19). 
   To obtain the skyline probability for a candidate 
result (Lines 4 and 18), we need to compute its 
skyline scope at runtime. A simple solution is to 
use the generic method described in Section 4.1. 
We remark that this solution can be further 
optimized by pruning the candidate objects based 
on the query range during skyline scope 
computation, as detailed in Appendix F, available 
in the online supplemental material. 
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Algorithm 6. Probabilistic top-k RSQ processing 
(N-SKY) 
 1: initialize the top-k result set S; 
 2: denote the query range as R, the k-th result in S 
as sk 
 3: RQthe result set of range query R over data set 
O 
 4: compute the skyline probability of each object 
in RQ  and insert the top-k objects into S 
 5: initialize the candidate skyline set SKY_CAND; 
 6: for each line segment l of R do 
 7:SKY_CANDSKY_CAND [ PSQ(s; O), where s 
is the starting point of l 
 8:for each object m not in PSQ(s; O) do 
 9:if In½mŠ 2 l then 
10:SKY_CANDSKY_CAND [fmg 
11: for each object m in SKY_CAND but not in 
RQ do 
12:compute m’s max-prob bound and insert m into 
priority queue H in the descending order of max-
prob 
13: while H is not empty do 
14:pop up the top element e from H 
15:if jSj ¼ k and sk ’s skyline probability ! max-
prob(e) 
       then break 
16:if jSj < k then 
17:insert e into S and compute sk if available 
18:else if e’s skyline probability > sk ’s then 
19:replace sk with e in S and recompute sk 
6.2 Continuous RSQ Problem 
So far we have studied the one-shot RSQ query. 
However, in location-based services, the user may 
sometimes prefer that the query is issued once 
whereas its result is monitored continuously. For 
example, a driver may issue an RSQ query “finding 
nearby gas stations with cheap gas prices” on her 
route from one place to another; a tourist may issue 
an RSQ query “monitoring nearby taxis with low 
volatility” while she is walking on a busy street. In 
this section, we study the continuous RSQ problem 
which computes the RSQ results for a moving 
query. In addition, an incremental C-RSQ 
algorithm for moving objects is presented in 
Appendix H, available in the online supplemental 
material. 
   The C-RSQ problem is defined as follows: 
Definition 10 (Continuous Range-Based Skyline 
Query   (C-RSQ)). Given a data set O and a linearly 

moving query range from R to R0 (see Fig. 11), 
where we assume the moving path is known in 
advance, the C-RSQ query returns the set of objects 
that are results of RSQs for some query range 
between R and R0 , together with the valid scope of 
each result object, denoting the duration when the 
object is a skyline result. 
 

 
Fig. 11. Continuous RSQ problem. 

 
TABLE 3 

Parameter Settings 

 

 
TABLE 2 

Index Size and Index Construction Time 
Fig. 11. Continuous RSQ problem. 

 

7 PERFORMANCE EVALUATION 

 

7.1 Experiment Setup 
In this section, we evaluate the performance of our 
proposed algorithms through simulations. The 
spatial data set used in the experiments contains 
2,249,727 objects representing the centroids of the 
street segments in California [20]. A subset of these 
objects are randomly chosen to form the testing 
data set. The nonspatial attribute values of these 
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objects are synthesized with a uniform distribution 
in the interval [0, 100,000]. The data space is 
normalized to a 100;000 Unit Â 100;000 Unit 
square, where 1 Unit represents about 1 meter. 
We index the nonspatial attributes of the objects by 
an R-tree (with a page fanout of 200 and a page 
occupancy of 70 percent). The page size is 4 K 
bytes and the size of each object is 320 bytes. We 
simulate the object movement by following a well-
known random way-point model [7]. As for the 
location update strategy, we adopt a common 
deviation- based one as follows: an object will 
update when and only when it is 100 meters away 
from its last reported location. 
Obviously, the location update frequency is 
proportional to the speed of the moving object. 
    We conducted our experiments on a workstation 
(Intel Xeon E5440 2.83 GHz CPU) running on 
Ubuntu Linux Operating System. The simulation 
codes were written in Java (JDK 1.6). For 
simplicity, the query ranges are randomly 
generated as squares. We measure the performance 
with two metrics: CPU time and I/O cost. In each 
I/O cost experiment, all objects and indexes are 
stored on a secondary-storage disk and a buffer in 
main memory is simulated. The number of buffer 
misses is an indicator of I/O cost. In each CPU time 
experiment, all objects and indexes are stored in 
the memory to exclude the overhead of disk 
accesses. Each measurement is the average result 
over 100 queries. 
    For I-SKY, we assume that the skyline scope of 
each object has been precomputed and indexed by 
the MX-CIF quad- tree. Table 2 shows the index 
size and the index construction time under the 
divide-and-conquer algorithm [2] and the 
incremental algorithm proposed in Section 4.2. 
While the index size and construction time are 
proportional to the data set cardinality, the 
proposed incremental algorithm clearly 
outperforms the divide-and-conquer algorithm. 
    The experiments are divided into two parts: one-
shot RSQ and continuous RSQ. The default settings 
and value ranges of the system parameters are 
summarized in Table 3. 
 
 
 
 

7.2 One-Shot RSQ Results 
 

For one-shot RSQ queries, we compare the CPU 
time and I/ O cost of three algorithms, i.e., CSQ 
[12], I-SKY, and N-SKY. 
We investigate the effect of data set cardinality, 
dimensionality of nonspatial attributes, query range 
size, and buffer size. With CSQ, the RSQ problem 
is also reduced to the SSQ 

 

8 CONCLUSION 

 
In this paper, we have presented a range-based 
skyline query as an extension to point- and line-
based skyline queries. We have proposed index-
based (I-SKY) and nonindex (N-SKY) solutions to 
resolve the range-based skyline problem. To handle 
the movement of the objects being queried, the 
incremental construction of the I-SKY index has 
also been devised. We have also studied the 
probabilistic range-based skyline problem to reduce 
both the result set size and computation cost. 
Additionally, we have extended the range-based 
skyline query to the continuous domain, and 
developed query processing algorithms for static 
and moving objects. The experimental results show 
that our proposed algorithms outperform than the 
existing line-based skyline solution in terms of both 
the CPU time and I/O cost. 
   As for future work, we will extend the query 
range to arbitrary shapes that have a closed-form 
mathematical expression, especially those with arc-
like boundaries. Furthermore, we plan to extend 
our range-based skyline problem to road networks. 
As the perpendicular-bisector- based method does 
not work for the network distance, new query 
processing algorithms need to be developed. 
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