
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Continuous Skyline Queries in Mobile Environments

D.Daslin Pragacini
1

1Ponjesly College of Engineering, Nagercoil, Tamil Nadu, India

Abstract

Skyline query processing for location-based services,
which considers both spatial and nonspatial attributes of
the objects being queried, has recently received
increasing attention. Existing solutions focus on solving
point- or line-based skyline queries, in which the query
location is an exact location point or a line segment.
However, due to privacy concerns and limited precision
of localization devices, the input of a user location is
often a spatial range. This paper studies a new problem
of how to process such range-based skyline queries. Two
novel algorithms are proposed: one is index-based (I-
SKY) and the other is not based on any index (N-SKY).
To handle frequent movements of the objects being
queried, we also propose incremental versions of I-SKY
and N-SKY, which avoid recomputing the query index
and results from scratch. Additionally, we develop
efficient solutions for probabilistic and continuous range-
based skyline queries. Experimental results show that our
proposed algorithms well outperform the baseline
algorithm that adopts the existing line-based skyline
solution. Moreover, the incremental versions of I-SKY
and N-SKY save substantial computation cost, especially
when the objects move frequently.
Key words: Location-based services, query processing,

skyline queries, moving objects

1. Introduction

 The combination of personal locator
technologies, global positioning systems, and
wireless communication technologies has
flourished location-based services (LBSs) in recent
years. The main usage of LBSs is to provide
mobile users with timely information at the right
place for their decision making. Conventional
LBSs focus on processing proximity-based queries,
including the range query and nearest neighbor
(NN) query. However, these queries are not
sufficient for the applications that need to consider
both spatial and nonspatial attributes of the objects
being queried. A typical scenario is finding a
nearby car park with cheap parking fee, in which
distance is a spatial attribute and parking fee is a
nonspatial attribute. Clearly, here a multicriterion

query is more appealing than a conventional spatial
query that considers the distance only. Among
various multicriterion queries, the skyline query is
considered as one of the most classical ones and
receives the most attention in LBS research.
However, the dynamic nature of the spatial
attribute makes skyline queries in LBSs unique and
challenging. Take the above park-finding scenario,
for example. At different locations, the distances
from the user to the car parks are not the same. As
a consequence, the skyline query results differ for
different locations. To efficiently compute location-
based skyline results, a number of algorithms have
been proposed for one-shot queries,and continuous
queries. Nevertheless, these previous studies have
limitations as they simply assume that the query
location is an exact location point or a line
segment. In this paper, we relax this assumption
and propose a more general skyline query—range-
based skyline query (RSQ), which takes a spatial
range as the input of user location, as opposed to a
point or a line in existing LBS skyline studies.
Compared to existing skyline queries, the range-
based skyline query might be more practical for
several reasons:

• The location of the query issuer could be
shaped as a spatial region (e.g., a region
that covers a complex spatial object or a
group of users).

• Due to limited precision of localization
devices, the query issuer does not have
accurate knowledge about his/her exact
location.

• For privacy reasons, the query issuer may
not want to expose his/her exact location
to the service provider. And a widely used
solution is to blur the location into a
cloaking region so that the adversary has
no clue about where the query issuer is
exactly located.

 To study the range-based skyline problem, Fig. 1a
shows an example of the above park-finding
scenario, where the hollow points represent the
parks’ locations and the rectangle R represents the
input range of the query. The nonspatial attributes

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

of the parks are shown in Fig. 1b, where low
parking fee and high service quality are preferred.
Given two parks p1 and p2 , if p1 is no worse than
p2 in nonspatial attributes and p1 is closer to the
query point than p2 ,1 we say p1 dominates p2 . A
skyline query is to find all parks that are not
dominated by any other park. The skyline results
depend on the location of the query point. For
example, if the query point is q1 , the skyline result
set is {a; b} because c is dominated by b while d is
dominated by both a and b; if the query point is q2 ,
the skyline result set is {b; c} because a and d are
both dominated by c. Thus, given a range-based
skyline query, the service provider should return a
collective set of skyline results for every possible
query point of the user in R.
Unfortunately, this is not easy as the number of
possible points in R is infinite. To address this
issue, we propose a novel index-based algorithm,
called I-SKY. The idea is to precompute the
skyline scopes for all objects by their dominance
relations. By indexing the skyline scopes, a range-
based skyline query can be efficiently processed
through a root-to-leaf traversal of the index tree.
 The range-based skyline problem becomes even
more challenging for dynamic data sets where the
objects being queried can move and update their
spatial attributes frequently. Processing skyline
queries over moving objects has numerous
applications, such as object tracking and
monitoring, location-aware computing, virtual
environments, and computer games . For example,
in a taxi dispatching application, the taxis notify
their locations to the dispatcher from time to time
(e.g., every 5 minutes). To dispatch taxis, the
dispatcher considers the location identified and the
last time the location wa reported, and selects the
taxis that are near to the customers with low
volatility (e.g., either locations are recently updated
or taxis are located at highly predictable regions
with no traffic). As another example, in battlefields,
to send critical supplies such as ammunitions and
medical kits, the best locations can be dynamically
determined by the positions of ground troops that
are on the move and other nonspatial factors such
as the current equipments and the number of
wounded persons.2 In these highly dynamic
scenarios, the index-based I-SKY algorithm may
not be efficient, as the index maintenance cost is
expensive. To overcome this drawback, we further
propose a nonindex algorithm, called N-SKY. It
reduces a range-based skyline query into several
segment-based skyline queries (SSQ), for which we
develop efficient query processing techniques.
 Our contributions made in this paper are as
follows:

• We identify a new problem of range-based

skyline queries arising in LBS applications. To
the best of our knowledge, this is the first work
that studies this problem.

• To process range-based skyline queries, we
propose an index-based algorithm called I-
SKY for static data sets and a nonindex
algorithm called N-SKY for highly dynamic
data sets.

• We further extend the problem to probabilistic
and continuous range-based skyline queries.
To process probabilistic top-k queries, we
propose pruning techniques to improve
computational efficiency. To process
continuous queries, we propose efficient
methods to compute the valid scope of each
skyline object.

• We conduct extensive experiments to evaluate
the performance of the proposed algorithms.
The result show that our algorithms perform
well under various system settings. In
particular, the incremental algorithms save
substantial computation cost for highly
dynamic data sets.

 The rest of this paper is organized as follows:
Section 2 reviews related work on skyline queries
and range-based queries. Section 3 gives some
preliminaries of the problem. We present the index-
based algorithm I-SKY and the nonindex algorithm
N-SKY in Sections 4 and 5, respectively. In
Section 6, we extend the algorithms to probabilistic
top-k and continuous range-based skyline queries.
The proposed algorithms are experimentally
evaluated in Section 7.Finally, this paper is
concluded in Section 8.

2 Related Work

In essence, a range-based skyline query inherits the
characteristics of a skyline query and a range-based
query. As such, we review the existing work on
these two queries.
 Skyline query processing. Skyline query

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

processing was first introduced into the database
community by Borzonyi et al. A number of
algorithms have been proposed from then on. These
algorithms can be divided into two categories. The
first category is nonindex algorithms and the
representatives are Black Nested Loop(BNL) and
Divide-and-Conquer (D&C) [3]. BNL scans the
data set sequentially and compares each new object
to all skyline candidates kept in the memory. D&C
partitions the data set into several parts, processes
each part in the memory, and, finally, merges all
partial skylines together. SFS [5] improved BNL by
presorting the data sets. In the Bitmap approach
[23], each data point is encoded in a bit string and
the skyline is computed by some efficient
operations on the bit matrix of all data points. The
other category of skyline algorithms is index-based.
In a high-dimensional data set is converted into a
1D data set and a B+-tree is built to accelerate
query processing. In an algorithm called NN was
proposed based on the depth first nearest neighbor
search via RÃ -tree. Papadias et al. proposed an
improved algorithm, called Branch-and-Bound
Skyline (BBS), which was based on the best-first
nearest neighbor search. By accessing only the
nodes that contain skyline points and employing
effective pruning techniques, BBS achieves the
optimal I/O access. More recently, in [25], a subset
of skyline points are collected to approximately
represent the distribution of an entire set of skyline
points. Lee et al proposed a new index structure
called ZBtree to index and store data points based
on Z-order curve, and developed a novel algorithm
ZSearch to process skyline queries.
 Huang et al. [12] introduced the skyline query
problem in the context of LBSs and proposed a
continuous skyline query processing algorithm
called CSQ for moving clients. Assuming a linear
movement model, CSQ processes the skyline query
at the starting point of the query segment and tries
to predict the possible changes to the answer set
when the client moves. This avoids continuously
computing the skyline results from scratch. Zheng
et al. [28] introduced a notion of valid scope for
LBS skyline queries, which saves the
recomputation if the next query point is still inside
the valid scope. Sharifzadeh and Shahabi [22]
defined a variant of skyline query in LBSs by
considering the distance between an object and a
set of query points. Our work is inspired by these
prior point-based or line-based skyline algorithms,
but focus on range-based skyline queries.
Obviously, range-based skyline queries cannot be
processed by simply applying the existing
algorithms because the number of query points/line
segments in a range is infinite.
 Range-based query processing. Range-based

query processing has recently received notable
attention as the location privacy issue is becoming
increasingly important. For privacy reasons, mobile
clients tend to blur their exact locations into an
uncertain range so that the service provider cannot
find where they are exactly located. The service
provider then returns a superset of candidate results
for every possible query point in the range. Finally,
the clients filter these results and obtain the true
result by their exact locations. Existing range-based
query algorithms studied only range-based kNN
(RkNN) query. Hu and Lee proposed the first
RkNN solution for rectangular ranges [10]. Ku et
al. studied the same problem in spatial networks
[17]. Complementally, Xu et al. developed an
RkNN algorithm for circular ranges [26]. To the
best of our knowledge, there is no work that has
studied range-based skyline queries.

3 Preliminaries

3.1 Problem Definition

Before we present the detailed algorithms for
processing range-based skyline queries, in this
section we give some preliminaries of the problem.
We consider a data set of objects O. Each object o
2 O is associated with one spatial (i.e., location)
attribute and several other nonspatial attributes
(e.g., parking fee and service quality).

Definition 1 (Nonspatial Dominance). Given two
objects o and o0 , if o0 is no worse than o in all
nonspatial attributes, then we say o0 nonspatially
dominates o. And o0 is a nonspatial dominator
object o f o, a n d o i s a nonspatial dominance
object of o0 . Formally, it is denoted as o0 / o. The
set of o’s nonspatial dominator objects is denoted
as Dom(o), i.e., o is dominated by any object in
Dom(o) on nonspatial attributes.

Definition 2 (Dominance).

Given a query point q and two objects o and o0 , if
1) o0 nonspatially dominates o, and 2) o0 is closer
to q than o (i.e., o0 also spatially dominates o), then
we say o0 dominates o w.r.t. the query point q.
Formally, it is denoted as o0 /q o.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

TABLE 1
Geometrical Notations

Definition 3 (Point-Based Skyline Query (PSQ)).
Given a data set O, the point À based skyline of a
query point q returns a subset of O in which each
object is not dominated by any other object in O
w.r.t. q. Based on the above definitions, we
formally define the range-based skyline query as
follows:
Definition 4 (Range-Based Skyline query) Given
a data set O and a query range R, the range-based
skyline query returns a superset of objects that
appear in the skyline set of some point in R.

3.2 Assumptions and Notations
In this paper, we are interested in how to efficiently
compute RSQ(R; O) given the query range R and
the data
set O. To facilitate query processing, we make the
following
assumptions:

• Both the mobile user and the objects are
located in a 2D plane and the distance metric is
euclidean distance.

• In a dynamic environment, both the mobile
user and the objects may move and update
their spatial locations.

• The values of nonspatial attributes remain
constant throughout the query period.

• The query range R is rectangular.

• Each object has a different location. And the
distances from the mobile user to any two
objects are always not equal to each other.
The geometrical notations that will be used in
this paper are listed in Table 1.

4 INDEX-BASED RSQ ALGORITHM: I-

SKY

We now present the algorithms for processing the
range-based skyline query. We first consider the
basic one-shot RSQ in this and next section. We

will extend it to the probabilistic RSQ and
continuous RSQ (C-RSQ) in Section 6.
 This section introduces an index-based RSQ
algorithm, called I-SKY. In Section 4.1, we first
propose a notion of skyline scope for each object.
By precomputing and indexing such skyline
scopes, the RSQ query can be easily processed.
To minimize the cost in computing the skyline
scopes, we also propose an incremental version of
the skyline scope construction algorithm in Section
4.2.

4.1 Index Construction and Query Processing

First, we introduce a notion of skyline scope for
each object o. If Dom(o) is empty, i.e., o has no
nonspatial dominator object, then o must be a
skyline member of any query point q.

Fig. 2. Processing RSQ by skyline scopes

Otherwise, o will not be a skyline member of a
query point q if it is farther away from q than any
of its nonspatial dominator objects in Dom(o); in
other words, o will be a skyline member of q if it is
closer to q than all its dominators in Dom(o).
Therefore, we define the skyline scope of each
object o as a region in which for any point q, o is
closer to q than any object in Dom(o).
Definition 5 (Skyline Scope). For an object o €O,
its skyline scope in a 2D plane P
 To compute the skyline scope of each object o,
we borrow the concept of Voronoi cell [2].
Definition 6 (Voronoi Cell). Given a data set O,
the Voronoi cell of an object o 2 O, denoted as V
convex hull in which for any point q, o is the
nearest object in O.
 Obviously, the skyline scope of an object o can
be obtained by computing the Voronoi cell of o
with the object subset containing o and its
nonspatial dominator objects, i.e., fog [DomðoÞ.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

Then, a range-based skyline RSQ(R; O) can be
computed by finding the objects whose skyline
scopes intersect with R. We remark that as each
object decides its own skyline scope with a
different object subset, the skyline scopes of
different objects may overlap. One should not take
the union of all objects’ skyline scopes as a
Voronoi diagram [2]. Fig. 2 shows an example.
Suppose a, d, and e have no nonspatial dominator
object and we have the nonspatial dominance
relations as a / b / c, d / b / c, and e / b / c.
Thus, the sky-line scopes of a, d, and e cover the
whole space. On the other hand, the skyline scopes
of b and c are obtained by their Voronoi cells with
object subsets. Given an RSQ query with R as the
input of the query range (see Fig. 2), since R
intersects with the skyline scopes of a, b, d, and e,
the skyline result set is fa; b; d As the skyline
scopes do not depend on the query, they can be
precomputed and indexed in advance for fast
retrieval. In this paper, we use the MX-CIF
quadtree [21] for indexing since it is considered
more efficient to index overlapping spatial objects
than an R-tree. Specifically, the
MX-CIF quadtree recursively decomposes the
underlying space into four equal-sized subspaces
such that the skyline scope of each object is fully
enclosed by a minimal subspace. Each subspace
corresponds to an index node in the MX-CIF
quadtree. Each object is associated with the index
node of the minimal subspace. For example, in Fig.
3a, since the skyline scopes of a and b cannot be
enclosed by any single quadrant of the whole
space, they are associated with the root in Fig. 3b;
for the skyline scopes of c and d, their minimal
enclosing nodes are N4 and N21 , respectively.
 The search over the index is straightforward.
Given a query range R, we want to find out the
skyline scopes that have intersection with R. Thus,
we recursively traverse the MX-CIF quadtree from
the root all the way down to the leaf nodes. For any
index node whose corresponding subspace
intersects with R, the skyline scope of every
associated object is retrieved and checked. If it has
intersection with R, the corresponding object is
added to the skyline result set.

4.2 Incremental Skyline Scope Computation

The skyline scopes may change drastically as the
objects move. To avoid recomputing all skyline
scopes from scratch, in this section we introduce an
incremental algorithm that efficiently updates
skyline scopes when the objects move.3 As we will
explain soon, the incremental algorithm can also be
used to compute the initial skyline scopes (i.e.,
Line 6 of Algorithm 1 can be modified to
incrementally compute the skyline scopes).

.. Fig. 3. MX-CIF quadtree index.
 Any movement of an object can be decomposed
into two operations: leaving the data set first and
joining again.

Fig. 4. Recomputation of skyline scope.

The solution to the object’s joining is
straightforward. Suppose that an object o joins the
data set. Its skyline scope with the current data set
can be computed and inserted into the index tree.
Additionally, for each o’s nonspatial dominance
object m, we should check whether PerBis(mo)

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

intersects with the original skyline scope of m. If it
does, the new skyline scope of m should be updated
to the intersection area and the original skyline
scope of m. can be also incrementally computed as
if they join the data set one by one.
 The solution to the object o’s leaving is more
complex. The first step is deleting the skyline scope
of o from the index tree. Then, for each o’s
nonspatial dominance object m, we should check
whether o has contributed to the boundary of m’s
skyline scope: if it has not, the skyline scope of m
does not change. Otherwise, it should be
recomputed.
 Fig. 4 illustrates such a recomputation process.
We assume that the original skyline scope of m is
shown as the triangle in Fig. 4a and then the object
o leaves. It is an intermediate skyline scope. The
essence of skyline scope recomputation is finding
the objects in Dom(m) whose perpendicular
bisectors with m “cut” the intermediate skyline
scope and form the final new skyline scope.
However, not every object in Dom(m) has the
chance of cutting and some can be pruned to reduce
the computation cost. To facilitate the pruning, we
introduce a notion of search area in the
recomputation, which is defined as an area that any
object located outside has no chance to contribute
to the new skyline scope and can be pruned from
further consideration. For example, the search area
is marked by dashed lines in Figs. 4b, 4c, and 4d.
And then we repeatedly choose the objects in the
search area (e.g., object e in Fig. 4c and object f in
Fig. 4d) from near to far to perform such cutting.
After each step of cutting, the intermediate skyline
scope may shrink. In Fig. 4c, it becomes polygon <
c2 ; c0 ; c4 ; c3 ; c1> and in Fig. 4d it further
becomes polygon < c2 ; c0 ; c5 ; c6 ; c3 ; c1>. The
search area will also shrink accordingly. When no
more object is found in the search area, the final
skyline scope is obtained.
 In the following, we explain in detail how to
update the search area from an intermediate skyline
scope. An intermediate skyline scope may be a
close or an open area, as shown in Figs. 5a and 5b,
respectively. In both cases, it can be divided into
two parts: the original skyline scope of m and the
other area that shares its border PerBis(mo)
(marked by dotted lines in Figs. 5a and 5b). We call
the second part an incremental area. With this

notion, if an object has a chance to contribute to the
final new skyline scope of m, its perpendicular
bisector with m should only intersect with the
incremental area, and not with the original skyline
scope of m. This principle lays the foundation for
object pruning. If an object does contribute to the
new skyline scope, the shape of new search area
can be obtained by 1.
Definition 7. Given a point o and a half-line r
starting from point a, let o0 denote the symmetrical
point of o with respect to r, and Hoo0 ðrÞ denote
the half plane on r’s infinite-direction side of
Line(oo0) (i.e., the right side of Line(oo0) in Fig.
7),no matter whether Line(oo0) intersects with r,
as shown in Fig. 7. Note that for any point p in
PerBis(po) will intersect with r.
 The proof of this theorem is given in Appendix B,
available in the online supplemental material.
 With the notion of search area, we present the
index update algorithm in Algorithm . In the object
leaving scenario, we check the nonspatial
dominator objects from near to far (Lines 11 and
13), because the nearer dominator
objects are more likely to contribute to the
boundary of the final skyline scope. Note that the
search area is the union of some circular areas (see
Fig. 6). We also set a stop condition—the search
bound maxDist—for the cutting.
This bound is set to two times of the distance
between m and the farthest vertex of the
incremental area (Lines 15-19).
Algorithm 2. Update of skyline scope index for I-
SKY
 1: if object o joins then
 2:compute SS(o) and insert it into the index tree;
 3:for each o’s non-spatial dominance object m do
 4:if PerBis(mo) intersects with SS(m) then
 5:SS(mÞ ¼ SS(m) \Hðm; oÞ;
 6:replace SS(m) in the index tree;
 7: if object o leaves then
 8:remove SS(o) from the index tree;
 9:for each o’s non-spatial dominance object m do
10:if o has contributed to m’s skyline scope then
11:sort m’s non-spatial dominator objects into
 DomQueue ordered by their distances to m;
12:initialize the search area and incremental area
 by Theorem 1;
13:while DomQueue is not empty do
14:xDomQueue:popðÞ;

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

15:if the incremental area is open then
16:maxDist1;
17:else maxDistthe distance from the
 farthest vertex of the incremental area to
m;
18:if distðx; mÞ > 2 Â maxDist then
19:break;
20:if x is in the search area then
21:cut the intermediate skyline scope by
 PerBis(xm);
22:update the incremental area and search area
23:replace SS(m) in the index tree;

Fig. 5. Intermediate skyline scopes.

5 NONINDEX RSQ ALGORITHM: N-

SKY

I-SKY indexes the skyline scopes, which
accelerates the processing of range-based skyline
queries. However, the maintenance cost of the
skyline scope index would be high if the objects
update their locations frequently. Although we
have developed an incremental index update
algorithm, frequent object location updates may
still cause many unnecessary index updating
operations on the skyline scopes that are not being
queried.
 To avoid the high update cost of I-SKY for the
scenarios where the objects move frequently and
fast, in this section we propose a nonindex

algorithm N-SKY. First, we prove that a range-
based skyline query can be reduced to several
segment-based skyline queries. Then, we present an
efficient algorithm for processing segment-based
skyline queries.

5.1 Reducing RSQ to SSQs

According to the definition of RSQ (Definition 4 in
Section 3.1), any object o 2 O located inside the
query range R must be a result object of the query,
i.e., a member of PSQ(o; O), since o is not spatially
dominated by any other object with respect to the
query point occupied by o. Such objects can be
obtained by a range query of R. In the following,
we focus on finding the set of result objects located
outside R.
 We start by defining the segment-based skyline
query.

Fig. 5. Intermediate skyline scopes.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 8

Fig. 6. Illustration of search area for the two cases.

Fig 7.Shaded area

Definition 8 (Segment-based Skyline Query).
Given a data set O and a line segment l, the
segment-based skyline returns a superset of objects
that appear in the skyline set of any point on
 An important observation is that, any result
object must be a member of the skyline set of
some point on the boundary of R. Theorem 2
proves the correctness of this observation, which
can then be used to reduce the RSQ problem to
SSQ problem.
Theorem 2. If an object o is a result of RSQ(R; O)
and o is outside R, o must be a member of the
skyline set w.r.t. some query point on the boundary
of R.The proof of this theorem is given in
Appendix C,available in the online supplemental
material.
 By Theorem 2, the RSQ problem can be reduced
to arange query plus several SSQs based on the

boundary of the query range. As the query range is
rectangular, its boundary consists of four line
segments. This reduction effectively decreases the
dimensionality of the problem from 2D to 1D, as
stated in Theorem 3.
Theorem 3.
Given a data set O and a rectangular range R whose
 boundary consists of four line segments l1 through
14 , the RSQ problem can be reduced to a range
query of R and four SSQs of SSQ(l1 ; O), SSQ(l2 ;
O), SSQ(l3 ; O), and SSQ(l4 ; O).
 The range query of R can be easily evaluated
using a traditional method. In the following, we
discuss how to efficiently compute SSQ(l; O) given
a line segment l and a data set O. the candidate
enter-in points and leave-out points for each
nonskyline object and skyline object, respectively,
based on the current skyline set. As the skyline set
changes, we update the enter-in and leave-out
points that are affected, and then choose the next
nearest point for updating the skyline set. In the
following, we give the details of this SSQ
algorithm.

5.2 SSQ Algorithm

5.2.1 Overview

SSQ(l; O) consists of the skyline of each point q on
the line segment l. The basic idea of evaluating an
SSQ is to move q from l’s left end to its right end,
and look for positions where the skyline set
changes. The changes can be divided into two
cases: an object enters the skyline set and an object
leaves the skyline set. Intuitively, the former case
means no any other object dominates the entering
object any longer, and the latter case means another
object is about to dominate the leaving object. The
corresponding points on the line segment are called
enter-in and leave-out points, respectively. To effi-
ciently compute the enter-in point and leave-out
point of each object o, we observe a prerequisite as
stated in Lemma 1.
Lemma 1. Regarding q as the query point, if there
is no current skyline object o0 2 PSQðq; OÞ
dominating object o (both nonspatially and
spatially), o will not be dominated by any other
object in O, and hence should enter the skyline set;
on the other hand, if there is some skyline object o0

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 9

dominating object o, o is no longer a skyline
member of q.
 However, the challenge is that the skyline set will
change as the query point moves. As a result, it is
not easy to precompute the enter-in points and
leave-out points of all objects in advance. To
resolve this issue, we maintain

5.2.2 Data Structures of the SSQ Algorithm

To facilitate our discussion, we introduce a
coordinate system along the line segment. We use
the name of a pointand its coordinate
interchangeably, i.e., a means both the point a and
its coordinate. Hence, a < b (resp. a > b) means
a lies to the left (resp. right) of b.
 For each object o 2 O and a point p on the line
segment, if no object in the skyline set PSQ(p; O)
dominates o w.r.t. p, p is called a free point of o.
For each nonskyline object o, the left-most free
point of o is called o’s enter-in point (denoted as
In[o]). For each skyline object o, the right-most
free point of o is called o’s leave-out point (denoted
as Out[o]).
Meanwhile, we say o is the corresponding object of
its enter- in point or leave-out point. Obviously, as
the skyline set changes, the enter-in and leave-out
points of some objects will change as well.
 Fig. 8 illustrates a method to compute the enter-
in and leave-out points, where l is a boundary line
of the query region. We first find out all nonspatial
dominator objects of o in the skyline set, e.g., a; b,
and c as shown in Fig. 8a.
According to the relationship between their
projections on the line segment l and o’s projection,
these objects can be divided into two subsets. If the
projection of an object lies to the left of o’s
projection, it is called o’s left nonspatial dominator,
e.g., a and b. Meanwhile, we say a and b left
dominate o. For any object o and its nonspatial
dominator object a, the intersection point of
PerBis(ao) and Line(l) is called CSP ha; o; li. The
CSP of o’s left nonspatial dominator and o is called
o’s left non-spatial dominate point (LDP), e.g.,
points p1 and p2 . On the other hand, if the
projection of an object lies to the right of o’s
projection, it is called o’s right nonspatial
dominator, e.g., c. Meanwhile, we say c right
dominates o. The CSP of o’s right dominator and o

is called o’s right nonspatial dominate point (RDP),
e.g., point p3 . To get the enter-in point In[o], we
find out the rightmost LDP (RM-LDP) and the
leftmost RDP (LM-RDP). If the RM- LDP lies on
the left side of the LM-RDP (e.g., point p1 versus
p3 in Fig. 8a), the RM-LDP is obviously the point
of In[o], as starting from this point to the LM-RDP,
o is not spatially dominated by any of its other
nonspatial dom- inator object. Otherwise, if the
RM-LDP lies on the right side of the LM-RDP
(e.g., point p1 versus p3 in Fig. 8b), it means that o
will always be spatially dominated by some of

Fig. 8. Illustration of enter-in point.

its nonspatial dominator objects. Hence, o would
never enter the skyline set and thus In[o] is left as
empty.
Similarly, Out[o] for a skyline member o can be
obtained from the LM-RDP.
 We introduce a priority list UpdateQueue to store
the enter-in and leave-out points from left to right.
As the query point moves, we repeatedly pop up
the first element of UpdateQueue and execute the
corresponding enter-in or leave-out operation. As
the skyline set changes, the enter-in and leave-out
points of some object(s) will change as well and the
corresponding elements in UpdateQueue should be
adjusted. As will be proved in Theorem 4, the
leave-out operation will not affect the enter-in or
leave-out point of any other object. The enter-in
operation of an object o will affect the enter-in and
leave-out points of o’s nonspatial dominance
objects only. Specifically, the enter-in point(s) of
some object(s) may move rightwards and the leave-
out point(s) of some object(s) may move leftwards.
Thus, the corresponding elements in UpdateQueue
must change accordingly. In particular, the new
enter-in point of some object may lie to the right of
its the leftmost RDP. Since in this case it has no
chance for the object to enter the skyline set any

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 10

longer, such an enter-in point should be removed
from UpdateQueue.
Algorithm 3 gives a formal description for the
dynamic update of UpdateQueue when a new
object o enters the skyline set. The following
theorem justifies the leave-out operation and thus
the correctness of this algorithm.

Algorithm 3. Dynamic update of UpdateQueue
(when objecto enters the skyline set)
 1: NON_SKYfmjo / m ^ m 62 PSQðIn½oŠ; OÞg;
 2: for each object m in NON_SKY do
 3:if o left dominates m at p and p lies on the right
side
5:update In[m] in UpdateQueue;
 6:if o right dominates m at p and p lies on the left
side then
 7:remove In[m] from UpdateQueue;
 8: SKY
 9: for each object m in SKY do
10:if o right dominates m at p and p lies on the left
side of Out[m] then
11:Out[m]p;
12:update Out[m] in UpdateQueue;
13: compute Out[o] based on the skyline set;
14: insert Out[o] into UpdateQueue;
Theorem 4. In the SSQ(l; O) problem, if an object
m 2 O leaves the skyline set at point q on the line
segment l, the enter-in or leave-out point of other
objects in O will not be affected.
 The proof of this theorem is given in Appendix D,
available in the online supplemental material.

5.2.3 SSQ Algorithm

With the data structures of enter-in points, leave-
out points, and UpdateQueue, Algorithm 4 gives
the pseudocode of the complete SSQ algorithm. We
illustrate the algorithm using an example shown in
Fig. 9. Fig. 9a shows the positions of five objects a-
e and the line segment l, and Fig. 9b shows the two
nonspatial attributes of each object. Assuming that
lower attribute values are preferred, we can get
sevennonspatial dominance pairs

Algorithm 4. Algorithm for SSQ(l; O)
 1: initialize P SQPSQ(s; O), where s is the starting
 point of l;
 2: while UpdateQueue is not empty do
 3:next qleftmost point of UpdateQueue;
 4:if next q is not within l then

 5:break;
 6:ocorresponding object of next q;
 7:remove next q from UpdateQueue;
 8:if next q is a leave-out point then
 9:P SQP SQ À fog;
10:if next q is an enter-in point then
11:P SQP SQ [fog;
12:invoke Algorithm 3 to update UpdateQueue;
 Initially, the skyline set at the starting point s is
computed by a point-based skyline algorithm (e.g.,
BBS [19]) or reused from the results of an adjacent
line segment if available. The result set for this
example is fa; bg (see Fig. 9c). Then, the enter-in
point and leave-out point of each object is
computed by the method presented in the last
section. As no object dominates a, a will never
leave the skyline set, and hence there is no Out½aŠ.
After sorting these enter-in and leave-out points
from left to right, UpdateQueue is initialized. Next,
we pop up the first element from UpdateQueue and
perform the corresponding update of the skyline
set, that is, object c enters the skyline set when the
query point q passes p1 . Because objects b, d, and
e are c’s nonspatial dominance objects, we should
check whether their enter-in and leave-out points
will be affected. Since c right dominates e w.r.t.
point p6 and p6 lies to the left of e’s enter-in point
p5 , e has no chance to enter the skyline set. Its
enter-in point should be removed from
UpdateQueue. Since c left dominates d w.r.t. point
p4 , which lies to the right of d’s original enter-in
point p3 , In½dŠ should be updated as p4 . Since
c right dominates b w.r.t. p7 , which lies to the left
of b’s original leave-out point p2 , Out[b] should be
updated as p7 . After updating the enter-in and
leave-out points, two elements remain in
UpdateQueue. After that, they are popped up and
the corresponding updates are performed, that is, b
leaves the skyline set and d enters the skyline set.
Finally, UpdateQueue becomes empty and the
algorithm is terminated.
 The union of the skyline sets generated during
query processing forms the final results of SSQ(l;
O). In the above example, SSQ(l; O) can be
obtained as {a; b; c; d}. By the SSQ algorithm, we
can also record the sky_interval of each SSQ result
object, i.e., the part of the line segment in which the
object is in the skyline set.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 11

 The time complexity of the SSQ algorithm
(Algorithm 4) is analyzed as follows: For each
result object of SSQ(l; O), Algorithm 3 is invoked
once. The size of the SSQ result set can be
estimated as Oððln jOjÞd Þ, where d is the number
of nonspatial attributes [1]. Algorithm 3 needs to
handle each nonspatial dominance object of the
new skyline member. The average number of such
dominance objects is calculated. For each
nonspatial dominance object, the possible
operations are modifying their enter-in and leave-
out points and updating their positions in Update-
Queue. The complexity of the former is linear .

Fig. 9. Illustration of SSQ algorithm.

6 EXTENSIONS

In this section, we extend the RSQ problem to the
probabilistic RSQ query in Section 6.1 and the
continuous RSQ query in Section 6.2.

6.1 Probabilistic RSQ Problem

As the RSQ query considers a spatial range as the
query input, instead of a location point, the result
set size might be too large for the user in some
applications. To address this problem, we propose a
concept of skyline probability to rank the skyline
results of the RSQ query.
Definition 9 (Skyline Probability). For a range-
based skyline query RSQ(R; O) and a result object
o 2 O, the skyline probability of o is defined as the
portion (in percentage) of the query range R in
which any point q satisfies that o is a skyline result
of PSQ(q; O).
 Thus, we can reduce the result set by returning
only the op-k results with the highest skyline
probabilities, which is termed as probabilistic top-k
RSQ. To answer such queries, we first consider
how to extend the I-SKY algorithm.
According to Definitions 5 and 9, the skyline
probability of an object o can be obtained by the
intersection area of the query range R and o’s
skyline scope.Recall that in the index tree of
skyline scopes (Section 4.1), the subspace of each
index node serves as a minimal bound of the
associated skyline scopes. In other words, if o’s
skyline scope is associated with an index node n,
we must have inter areaðR; oÞ inter areaðR; nÞ.
Based on this observation, we develop Algorithm 5
to prune the search space for top-k query
processing. We dynamically maintain a priority
queue H for index nodes and data objects, ordered
by their inter area values, while traversing the
index tree (Lines 3-4 and 7-8). An object enqueued
from H may become a top-k result (Lines 9-13).
The top-k query processing proceeds until we
encounter an index node or an object whose
intersection area is no larger than the kth result
obtained so far (Line 6). This is because all the
remaining objects could not have an intersection
area (skyline probability) larger than the current kth
result. Thus, they can be pruned from consideration
as top-k results.

Algorithm 5. Probabilistic top-k RSQ processing
(I-SKY)
 1: initialize the top-k result set S;
 2: denote the query range as R, the k-th result in S
as sk

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 12

 3: insert the root of skyline-scope index iRoot into
a priority queue H, sorted in descending order of
 inter_area
 4: while H is not empty do
 5: pop up the top element e from H
 6: if |s|= k and inter area(R; e)< inter area(R; sk)
 then break;
 7: if e is an index node then
 8:insert e’s children and associated objects into H
 9: if e is a data object then
10:if |S| < k then
11:insert e into S and compute sk if available
12:else if inter area(R; e) > inter area(R; sk) then
13:replace sk with e in S and recompute sk
 Next, we discuss how to extend the N-SKY
algorithm for processing the probabilistic top-k
RSQ query. In Theorem 3, we have showed that the
RSQ problem can be reduced to a range query of R
and four SSQs of the range boundary. Recall in the
proposed SSQ algorithm (Section 5.2), the skyline
results of a line segment l are obtained by first
computing the skyline set PSQ(s; O) of l’s starting
point s and then dynamically updating it by moving
the query point along l to its ending point. A
significant amount of computation lies in updating
the skyline set based on the enter-in/leave-out
points of the objects when the query point moves.
To prune the computation for probabilistic top-k
processing, we prove in Theorem 5 that if an object
is a final SSQ result, it must be a skyline object in
PSQ(s; O) or its initial enter-in point must lie on l.
Thus, we can quickly obtain a candidate set of
skyline results through the initial processing.

Theorem 5. For SSQ(l; O), if an object is a final
SSQ result, it must be in PSQ(s; O) or its initial
enter-in point must lie on l, where s is the starting
point of l.
 The proof of this theorem is given in Appendix
E, available in the online supplemental material.
 Then, we develop an upper bound of skyline
probability for each object in the candidate set in
order to prioritize further processing. For a skyline
object o in PSQ(s; O), its leave-out point Out[o]
can be computed as discussed in Section 5.2.2.
Denote o’s right nonspatial dominator object
corresponding to Out[o] as o0 . The perpendicular
bisector PerBis(oo0) divides the whole space into
two open-half planes. Clearly, o will not be a
skyline object for any query point q located in the

open-half plane containing o0 , since o will be (at
least) dominated by o0 w.r.t. such q. Thus, we can
derive the upper bound of o’s skyline probability.
consider the segment sv in Fig. 10, where b is an
initial skyline object and Out½bŠ ¼ p2 ; hence,
max_prob(b) is the portion of the area enclosed by
the polygon hs; p2 ; i2 ; w; ui.
 Similarly, for a nonskyline object o, we can
compute itsenter-in point In|Š. Denote its left
nonspatial dominator object (an initial skyline
result) It is possible for this object o to become a
skyline result only if the query point q is located in
the open-half plane containing o cut by
PerBis(oo00), since otherwise o will be dominated
by o00 . In the example of Fig. 10, for the
nonskyline object d, max_prob(d) is the portion of
the area enclosed by the polygon hp3 ; v; w; i3 i, .
 The max-prob bound can be further tightened
when weconsider more subsequent line segments.
In Fig. 10,suppose d is an initial skyline result for
the segment vw and Out½dŠ ¼ p8 . Thus,
max_prob(d) can be further reduced to the portion
of the polygon hp3 ; v; p8 ; i8 ; i3 i when vw is
considered.
 Based on the notion of max-prob, we develop
the probabilistic top-k RSQ algorithm for N-SKY
in Algorithm 6. In the first stage, we compute the
skyline results of range query R
(Line 3). After getting their skyline probabilities,
the top-k result set S is initialized (Line 4). Next,
we consider the four SSQ queries and compute a
candidate result set SKY_CAND (Lines 5-10). For
each object in SKY_CAND, we compute its max-
prob bound and insert it into a priority queue H in
the descending order of max-prob (Lines 11-12).
Finally, we iteratively compute the skyline
probability for each object in H and dynamically
update S, until the kth object obtained so far has a
skyline probability higher than the max-prob bound
of the next object (Lines 13-19).
 To obtain the skyline probability for a candidate
result (Lines 4 and 18), we need to compute its
skyline scope at runtime. A simple solution is to
use the generic method described in Section 4.1.
We remark that this solution can be further
optimized by pruning the candidate objects based
on the query range during skyline scope
computation, as detailed in Appendix F, available
in the online supplemental material.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 13

Algorithm 6. Probabilistic top-k RSQ processing
(N-SKY)
 1: initialize the top-k result set S;
 2: denote the query range as R, the k-th result in S
as sk
 3: RQthe result set of range query R over data set
O
 4: compute the skyline probability of each object
in RQ and insert the top-k objects into S
 5: initialize the candidate skyline set SKY_CAND;
 6: for each line segment l of R do
 7:SKY_CANDSKY_CAND [PSQ(s; O), where s
is the starting point of l
 8:for each object m not in PSQ(s; O) do
 9:if In½mŠ 2 l then
10:SKY_CANDSKY_CAND [fmg
11: for each object m in SKY_CAND but not in
RQ do
12:compute m’s max-prob bound and insert m into
priority queue H in the descending order of max-
prob
13: while H is not empty do
14:pop up the top element e from H
15:if jSj ¼ k and sk ’s skyline probability ! max-
prob(e)
 then break
16:if jSj < k then
17:insert e into S and compute sk if available
18:else if e’s skyline probability > sk ’s then
19:replace sk with e in S and recompute sk
6.2 Continuous RSQ Problem
So far we have studied the one-shot RSQ query.
However, in location-based services, the user may
sometimes prefer that the query is issued once
whereas its result is monitored continuously. For
example, a driver may issue an RSQ query “finding
nearby gas stations with cheap gas prices” on her
route from one place to another; a tourist may issue
an RSQ query “monitoring nearby taxis with low
volatility” while she is walking on a busy street. In
this section, we study the continuous RSQ problem
which computes the RSQ results for a moving
query. In addition, an incremental C-RSQ
algorithm for moving objects is presented in
Appendix H, available in the online supplemental
material.
 The C-RSQ problem is defined as follows:
Definition 10 (Continuous Range-Based Skyline
Query (C-RSQ)). Given a data set O and a linearly

moving query range from R to R0 (see Fig. 11),
where we assume the moving path is known in
advance, the C-RSQ query returns the set of objects
that are results of RSQs for some query range
between R and R0 , together with the valid scope of
each result object, denoting the duration when the
object is a skyline result.

Fig. 11. Continuous RSQ problem.

TABLE 3

Parameter Settings

TABLE 2

Index Size and Index Construction Time
Fig. 11. Continuous RSQ problem.

7 PERFORMANCE EVALUATION

7.1 Experiment Setup
In this section, we evaluate the performance of our
proposed algorithms through simulations. The
spatial data set used in the experiments contains
2,249,727 objects representing the centroids of the
street segments in California [20]. A subset of these
objects are randomly chosen to form the testing
data set. The nonspatial attribute values of these

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 14

objects are synthesized with a uniform distribution
in the interval [0, 100,000]. The data space is
normalized to a 100;000 Unit Â 100;000 Unit
square, where 1 Unit represents about 1 meter.
We index the nonspatial attributes of the objects by
an R-tree (with a page fanout of 200 and a page
occupancy of 70 percent). The page size is 4 K
bytes and the size of each object is 320 bytes. We
simulate the object movement by following a well-
known random way-point model [7]. As for the
location update strategy, we adopt a common
deviation- based one as follows: an object will
update when and only when it is 100 meters away
from its last reported location.
Obviously, the location update frequency is
proportional to the speed of the moving object.
 We conducted our experiments on a workstation
(Intel Xeon E5440 2.83 GHz CPU) running on
Ubuntu Linux Operating System. The simulation
codes were written in Java (JDK 1.6). For
simplicity, the query ranges are randomly
generated as squares. We measure the performance
with two metrics: CPU time and I/O cost. In each
I/O cost experiment, all objects and indexes are
stored on a secondary-storage disk and a buffer in
main memory is simulated. The number of buffer
misses is an indicator of I/O cost. In each CPU time
experiment, all objects and indexes are stored in
the memory to exclude the overhead of disk
accesses. Each measurement is the average result
over 100 queries.
 For I-SKY, we assume that the skyline scope of
each object has been precomputed and indexed by
the MX-CIF quad- tree. Table 2 shows the index
size and the index construction time under the
divide-and-conquer algorithm [2] and the
incremental algorithm proposed in Section 4.2.
While the index size and construction time are
proportional to the data set cardinality, the
proposed incremental algorithm clearly
outperforms the divide-and-conquer algorithm.
 The experiments are divided into two parts: one-
shot RSQ and continuous RSQ. The default settings
and value ranges of the system parameters are
summarized in Table 3.

7.2 One-Shot RSQ Results

For one-shot RSQ queries, we compare the CPU
time and I/ O cost of three algorithms, i.e., CSQ
[12], I-SKY, and N-SKY.
We investigate the effect of data set cardinality,
dimensionality of nonspatial attributes, query range
size, and buffer size. With CSQ, the RSQ problem
is also reduced to the SSQ

8 CONCLUSION

In this paper, we have presented a range-based
skyline query as an extension to point- and line-
based skyline queries. We have proposed index-
based (I-SKY) and nonindex (N-SKY) solutions to
resolve the range-based skyline problem. To handle
the movement of the objects being queried, the
incremental construction of the I-SKY index has
also been devised. We have also studied the
probabilistic range-based skyline problem to reduce
both the result set size and computation cost.
Additionally, we have extended the range-based
skyline query to the continuous domain, and
developed query processing algorithms for static
and moving objects. The experimental results show
that our proposed algorithms outperform than the
existing line-based skyline solution in terms of both
the CPU time and I/O cost.
 As for future work, we will extend the query
range to arbitrary shapes that have a closed-form
mathematical expression, especially those with arc-
like boundaries. Furthermore, we plan to extend
our range-based skyline problem to road networks.
As the perpendicular-bisector- based method does
not work for the network distance, new query
processing algorithms need to be developed.

REFERENCES

1. J.L. Bentley, H.T. Kung, M. Schkolnick, and C.D.

Thompson, “Onthe Average Number of Maxima in
Set of Vectors and Applications,” J. ACM, vol. 25,
no. 4, pp. 536-543, 1978.

2. M. Berg, O. Cheong, and M. Kreveld,
Computational Geometry:Algorithms and
Applications, third ed., chapter 7. Springer, 2008.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 15

3. S. Borzonyi, D. Kossmann, and K. Stocker, “The
SkylineOperator,” Proc. Int’l Conf. Data Eng., pp.
421-430, 2001.

4. Y. Cai and T. Xu, “Design, Analysis, and
Implementation of aLarge-Scale Real-Time
Location-Based Information Sharing System,” Proc.
ACM Sixth Int’l Conf. Mobile Systems,
Applications, andServices (MobiSys ’08), pp. 106-
117, 2008.

